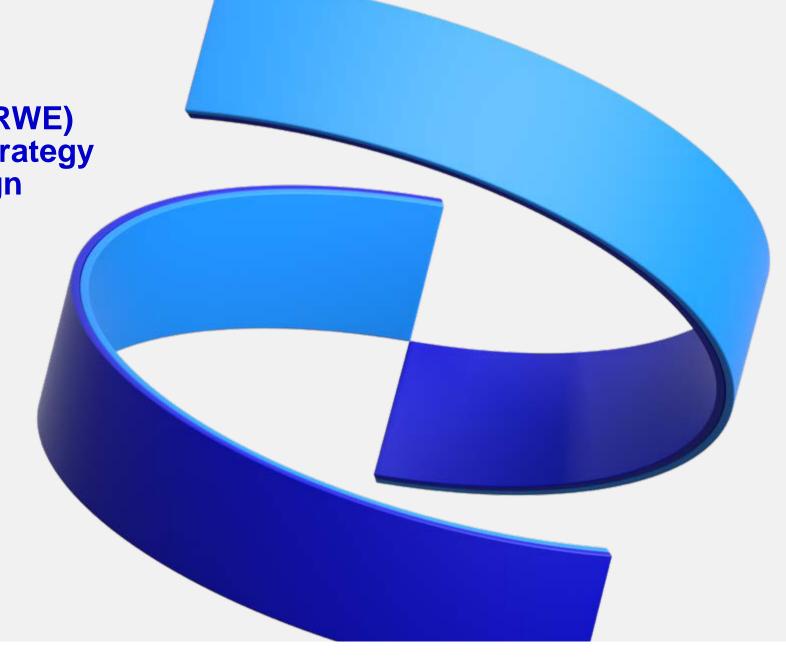
Use of Real-World Evidence (RWE) to Drive Drug Development Strategy and Inform Clinical Trial Design

Speakers:


Jennifer Webster, RWE COE Simon Dagenais, RWE COE

Moderator:

Jing Liu, Clinical Pharmacology

Event

ASCPT Open-Access Webinar Monday, April 25, 2022, 12pm EST

Disclaimer

The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to Pfizer, ASCPT, or their directors, officers, employees, volunteers, members, chapters, councils, communities or affiliates, or any organization with which the presenter is employed or affiliated.

These PowerPoint slides are the intellectual property of the presenters and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. All trademarks are the property of their respective owners

Brief history of RWE in the US

- Congress passed 21st Century Cures Act in December 2016
- Included a provision on Real World Evidence (Section 3022)
- Modified Federal Food, Drug, and Cosmetic Act to add section 505F
- Instructed FDA to evaluate use of RWE in drug approval process and:
 - 1. Develop framework for using RWE in drug approvals within 2 years
 - 2. Draft guidance on using RWE in drug approvals within 5 years
 - 3. Pursue RWE partnerships with industry, academia, professional organizations, etc.

Submitting Documents Using Real-World Data and Real-World Evidence to FDA for Drugs and Biologics

Guidance for Industry

DRAFT GUIDANCE

This ruidance document is being distributed for comment purposes only

Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the Federal Register of the notice amounting the availability of the draft guidance. Submit electronic comments to <a href="https://documents.org/lines/sept-2-submitted-regarding-se

For questions regarding this draft document, contact (CDER) Lauren Milner, 301-796-5114, or (CBER) Office of Communication. Outreach and Development, 800-835-4709 or 240-402-8010

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

> > May 2019 Procedural

Real-World Data: Assessing Electronic Health Records and Medical Claims Data To Support Regulatory Decision-Making for Drug and Biological Products

Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes on

Comments and suggestions regarding this druft document should be submitted swiths 160 days of publication in the Federal Registers of the notice associationing the availability of the fault guidance. Submit electronic comments to https://www.regulstons.gov/, Submit written comments to the Dockert Managament 18stf (1614-403); Food and Dung Administration, 56/10 Fishers Lane, Rm. 1001, Rockville, MD. 20052. All comments studied be identified with the dockert market incident in the rection of activitied for the articles in the Todace Receiver.

For questions regarding this draft document or the RealWorld Evidence Program, please emai CDERMedicalPolicy-RealWorldEvidence@fda.hhs.gov

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologies Evaluation and Research (CBER) Occology Center of Excellence (OCE)

September 2021
Real World Data/Real World Evidence (RWD/RWF

Data Standards for Drug and Biological Product Submissions Containing Real-World Data Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only

Comments and suggestions regarding this fluid document should be submitted within 60 days of publication in the Facious Register of the notice amountaing the availability of the guidance. Submit electronic comments to <u>https://www.negulations.org/</u>, Submit written comments to the Dockes Management Saff (FBA-303); Food and Drug Administration, 5010 Fishers Lane, Rm. 1041, Rockella, MD 20182. All comments should be identified with the docker number lates in the rotice of notability that publishes in the Federal Registers.

For questions regarding this draft document or the Real-World Evidence Program, please emai CDERMedicalPolicy-RealWorldEvidence@fda.hhs.gov.

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologies Evaluation and Research (CBER

October 2021 Real-World Data/Real-World Evidence (RWD/RWE) Real-World Data:
Assessing Registries to
Support Regulatory
Decision-Making for Drug
and Biological Products
Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this dark document should be submitted within 99 days of polyphilotation in the Federal Register of the notice amountage the malability of the draft grided to the state of the state amountage of the state amountage of the state polyphilotation in the Federal Register of the state comments to https://www.negolations.gov/. Submit wiritus and the state of t

For questions regarding this deaft document, contact (CDER) Anselan Stewart, 240-402-6631, of (CBER) Office of Communication, Outreach and Development, 800-835-4769 or 240-402-8010

> US. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Conclogy Center of Excellence (OCE)

November 2021 Real World Data/Real World Evidence (RWD/RWE) Considerations for the Use of Real-World Data and Real-World Evidence to Support Regulatory Decision-Making for Drug and Biological Products

Guidance for Industry

DRAFT GUIDANCE

This midden or document is being distributed for comment numerous only

Comments and suggestions regarding this draft document should be submitted within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic correctors to https://www.regulations.gov.Submit written comments to the Dockets Management Staff (HFA-195), Food and Drug Administration, 5610 Fishers Lane, Rm. 1061, Rockville, MD 29852. All Comments should be identified with the

For questions regarding this draft document, contact (CDER) Tala Fakhouri, 301-837-7407, o

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologies Evaluation and Research (CBER)

December 2021 Real World Data/Real World Evidence (RWD/RWE

References

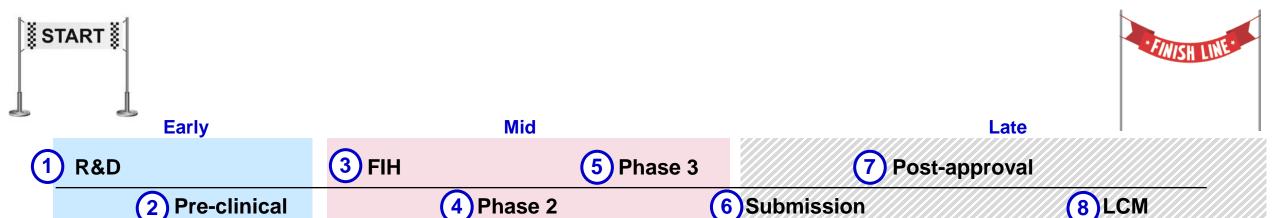
Important terminology related to RWE

	Real world data	Real world insights	Real world evidence	
Definition	Data relating to patient health status and/or delivery of health care routinely collected from a variety of sources	Answers to internal research questions derived from analyzing real world data	Clinical evidence about the usage and potential benefits or risks of a medical product derived from analysis of RWD	
Examples	 Medical claims and billing Electronic health records Patient/product registries Patient surveys 	Hypothesis generationFeasibilityPatient journeyUnmet needs	Evidence supporting:EffectivenessSafetyOutcomes	
Analogy				

Table 1 Common sources, types, and examples of real-world data

Source	Туре	Subtype	Examples
Administrative	Third-party payer claims	Closed networks	IBM MarketScan, IQVIA PharMetrics, Optum Clinformatics
		Open networks	IQVIA LAAD, DRG RWD, Symphony IDV
		Government	CMS FFS Medicare, Medicaid, VA/DOD
	Hospital chargemaster		Premier, Vizient, IQVIA CDM
	Pharmacy		Surescripts, IQVIA NDTI
Electronic health records	Care setting	Hospitals	Cerner, Epic, Athena
		Clinics	IQVIA AEMR, Optum Panther, IBM Explorys
		Long-term care/Home health	PointClickCare Lighthouse, Optima/Net Health
	Disease	Oncology	Flatiron, Ontada, ConcertAl
		Behavioral health	Kareo, SimplePractice, Valant
		Other	Praxis, TSI Healthcare, Phillips
atients	Health surveys	Private	Kantar Health NHWS, Gallup National Health
		Public	NHANES, MEPS
	Outcome measures		Kantar Health, Evidation Health
	Multidimensional		PatientsLikeMe, Ciitizen
	Consumer genetic testing		23andMe, Ancestry.com
	Social determinants of health		IQVIA/Experian, MarketScan HPM, Optum SES
	Medical devices		Glooko, Livongo
	Mobile device biometrics	Smartphones	iPhone (HealthKit), Android (Google Fit)
		Smart watches	Apple Watch (HealthKit), Fitbit (Google Fit)
Diagnostics	Laboratory testing	Genetic testing	Invitae, Neogenomics, Ambry Genetics
		Other	Quest, LabCorp
	Clinicogenomics	Oncology	AACR GENIE, Optum Clinicogenomics
	Population genomics		NHGRI 1000 Genomes Project, NIH All of Us
	Diagnostic imaging		Life Image, Ambra Health
Other	Disease registries	Traditional	CorEvitas, Target RWE
		Other	OM1, COTA Healthcare
	Adverse event reports	Regulatory	FDA FAERS, FDA VAERS
		Social media	Twitter, Facebook
	Mortality	Public/Private	CDC WONDER, ObituaryData.com
	Tokenization		HealthVerity, Datavant, Komodo

PointClickCare®



RWE can be a powerful tool at every step of the product development process

Understanding patient population

- Prevalence
- Incidence
- Population size
- Comorbidities
- Temporal trends
- Diagnostic journey

Understanding health care utilization

- Quantity/quality of health care
- Standard of care
- Unmet needs
- Clinical trial sites
- Adherence/persistence

Understanding disease

- Natural history
- Disease progression
- Disease segmentation
- Endpoints
- Sample size
- Trial feasibility
- Trial modeling
- Trial design
- Generating hypotheses
- Effect size

DOI: 10.1002/pds.4932

REVIEW

WILEY

Trial designs using real-world data: The changing landscape of the regulatory approval process

Nancy A. Dreyer^{5,6} (3)

CLINICAL CANCER RESEARCH | PERSPECTIVES

Real-World Evidence in Support of Oncology Product Registration: A Systematic Review of New Drug Application and Biologics License Application Approvals from 2015-2020

Bhakti Arondekar¹, Mei Sheng Duh², Rachel H. Bhak², Maral DerSarkissian^{2,3}, Lynn Huynh², Kelsey Wang²,

The Role of Real-World Evidence in FDA-Approved New Drug and Biologics License Applications

Christina A. Purpura¹, Elizabeth M. Garry¹, Nicholaas Honig¹, Abigail Case¹ and Jeremy A. Rassen^{1,*}

Today's Encore Webinar will review R&D applications of RWE based on our article in the January 2022 issue of Clinical Pharmacology & Therapeutics

Learning objectives

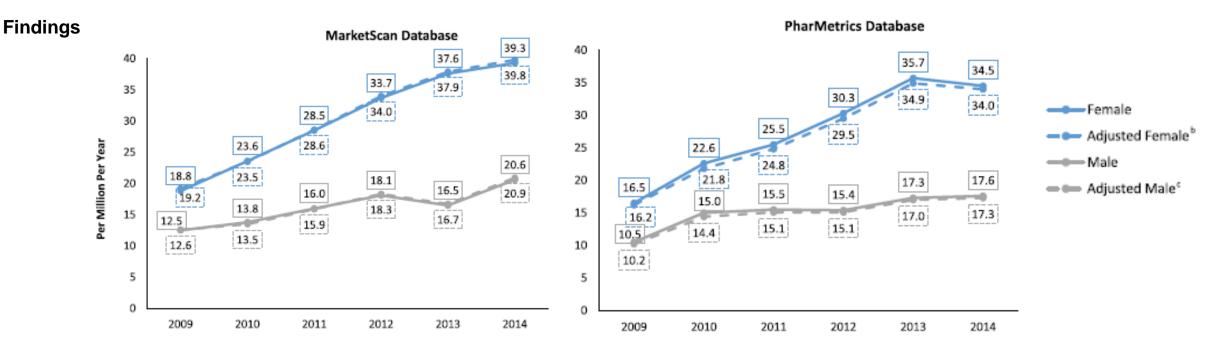
At the end of this webinar, participants will understand how biopharmaceutical companies can leverage RWD, RWI, and RWE (collectively termed "RWE") to inform internal decisions throughout the product development process, including:

- 1. Use of RWE to guide pipeline and portfolio strategy
- 2. Use of novel sources of RWE to inform product development
- 3. Use of RWE to inform clinical development

State of the Art: Use of Real-World Evidence to Drive Drug Development Strategy and Inform Clinical Trial Design

While there are many examples of using RWE to guide R&D portfolio strategy, today we will focus on 3 examples

	Citation	Study Objective	Data Source(s)	Insight
	Broder et al. (2018) ¹⁷	Estimate prevalence and incidence of neuroendocrine tumors	IBM MarketScan and IQVIA PharMetrics claims databases	Prevalence and incidence increasing over time.
	Dellon et al. (2014) ⁶⁶	Estimate prevalence of EE	IQVIA PharMetrics claims	Updated estimates for number of patients with EE in the United States following the introduction of a new ICD-9 diagnosis code specific to EE.
	Wallin et al. (2019) ¹⁶	Estimate national prevalence for MS by analyzing multiple US databases, covering different population segments.	Optum, IBM, Kaiser Permanente, Department of Veterans Affairs, and the Centers for Medicare and Medicaid claims databases	The 3-year prevalence of MS was 309.2 per 100,000, with an estimated 727,344 cases in the United States, higher than previous studies.
	Halpern et al. (2019) ⁶⁷	Estimate prevalence of agitation among patients with AD	Optum EHR database	Prevalence of agitation over a 2-year period was 44.6%. NLP was used to analyze unstructured data for keywords related to agitation.
	Chehade et al. (2021) ⁶⁸	Describe patient journey for individuals with EG/EoD	Symphony Health Patient Source claims database	Many EG/EoD patients initially diagnosed with irritable bowel syndrome or dyspepsia, highlighting the need for improved diagnosis.
•	Morgan et al. (2021) ⁶⁹	Describe diagnostic journey of patients with PSP	Patient interviews and physician chart reviews in France, Germany, Italy, Spain, the United Kingdom, and the United States	Diagnostic delays may be related to patients first presenting to primary care providers before being evaluated by movement disorder specialists.


Target population sizing using RWE can support early go/no-go decisions

Background

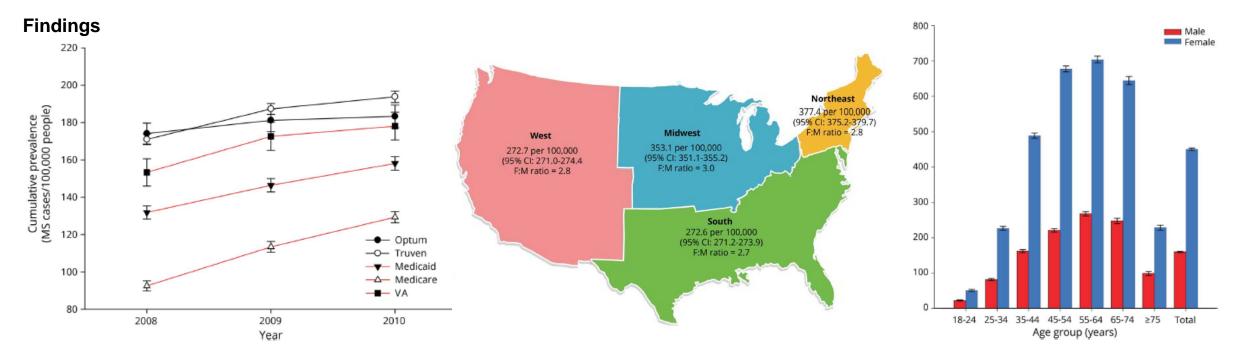
- Estimates on prevalence and incidence of neuroendocrine tumors (NETs) in the US based on SEER registry suggest they are ultra rare
- Objective was to update estimates of NETs using insurance claims in the US

Methods

- Analyzed claims data from MarketScan and PharMetrics that together include ~100 million individuals in the US
- Estimated annual prevalence and incidence rates based on ICD-9 diagnosis codes among insured

RWD insights

Although NETs are rare, claims in the US suggest annual prevalence and incidence may be increasing


Combining multiple sources of RWE can help size entire target population

Background

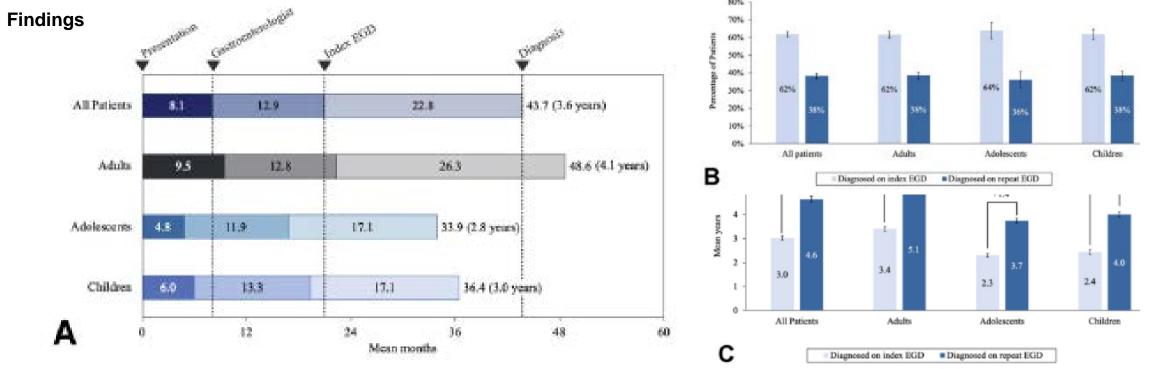
- Older estimates based on literature suggest there are 300,000-400,000 patients with multiple sclerosis (MS) in the US
- Objective was to generate an updated and robust estimate of national prevalence of MS in US using RWD

Methods

- Analyzed claims data from Optum, MarketScan, Kaiser, VA, and CMS
- Combined estimates from different population subgroups into comprehensive national estimate

RWD insights

Estimates from 5 recent sources of claims data suggest that 727,344 individuals in the US have MS


RWE can identify uncover unmet needs that inform product strategy

Background

- Literature suggests that eosinophilic gastrointestinal diseases (EG/EoD) are commonly misdiagnosed
- Objective was to understand the diagnostic journey of patients with EG/EoD in the US

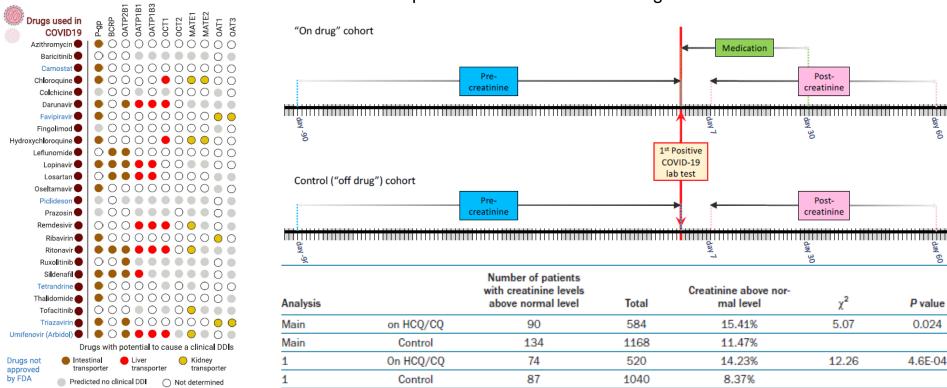
Methods

- Analyzed data from Symphony Health, a large database of insurance claims for multiple payers in the US
- Estimated interval between symptom presentation, gastroenterologist visit, diagnostic test (EGD), and diagnosis

RWD insights

Mean delay from symptom presentation to diagnosis of EG/EoD was 4.1 years in the US

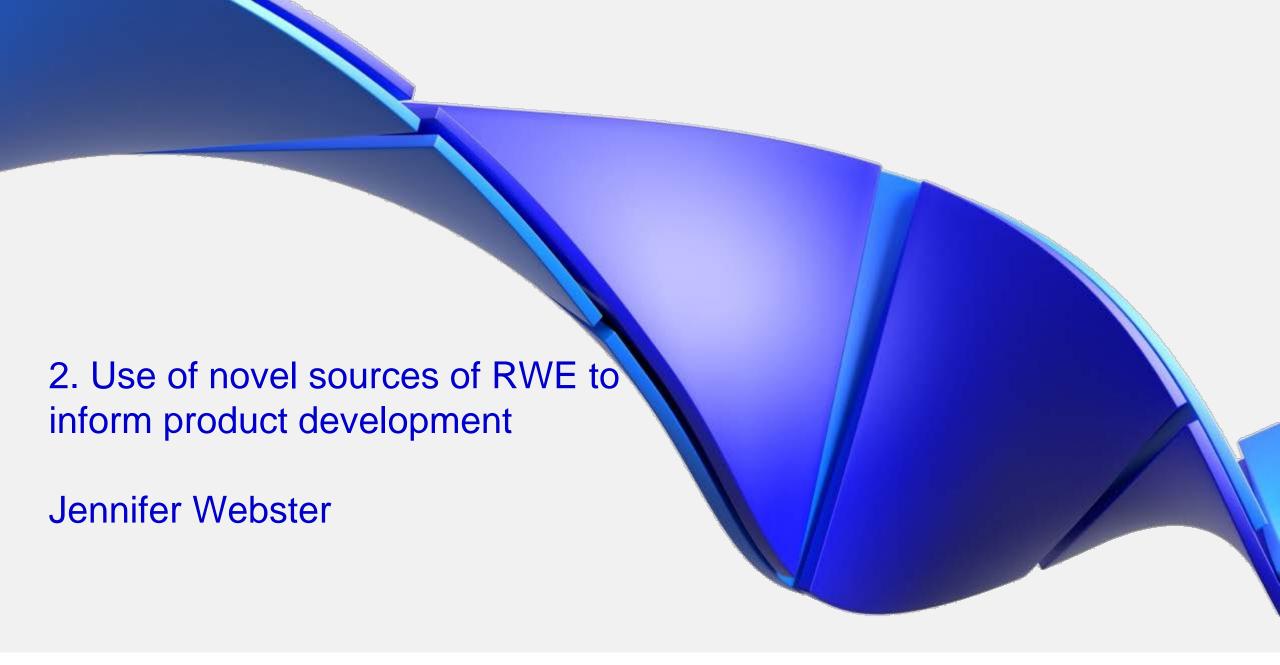
RWE can complement other data to inform risk assessment related to DDIs


Background

- Early in COVID-19 pandemic, researchers were interested in repurposing existing drugs to minimize development time
- 25 drugs (anti-microbials and anti-inflammatories) were evaluated in clinical trials for COVID-19
- Based on cell line studies, these drugs were predicted to impact 11 transporter pathways that could result in DDIs

Methods

Analyzed EHR data from Cerner and USCF to determine if predicted DDIs were occurring based on lab test values


Findings

RWD insights

20/25 (80%) existing drugs evaluated for COVID-19 were predicted to cause transporter-mediated clinical DDIs



Publicly available resources like SEER & WHO offer high level epi & trends

Scenario: Your team is concerned that incidence rates from the literature give an inaccurate picture within the TPP for MSI-H mCRC, with an opportunity to use large scale RWD for pharmacometric modeling

The SEER registry aggregates data from cancer registries in a selection of states. Incidence and death rates per 100,000 for colorectal cancer are shown.

Rate Per 100,000 Persons 1992 1996 2000 2004 2008 2012 2019 Year Death Rate

Rate of New Cases

Colorectal Cancer — Cancer Stat Facts

Claims and EHR data give insights on more refined subpopulations

Identifying subpopulations in real world data. Example: MSI-H mCRC patients

Option 1: Expert knowledge

Ontologies beyond ICD-9/10

Evidence of Molecular Testing

Line of Therapy Business Rules Targeted
Therapies as
Proxies

Option 2: Machine Learning

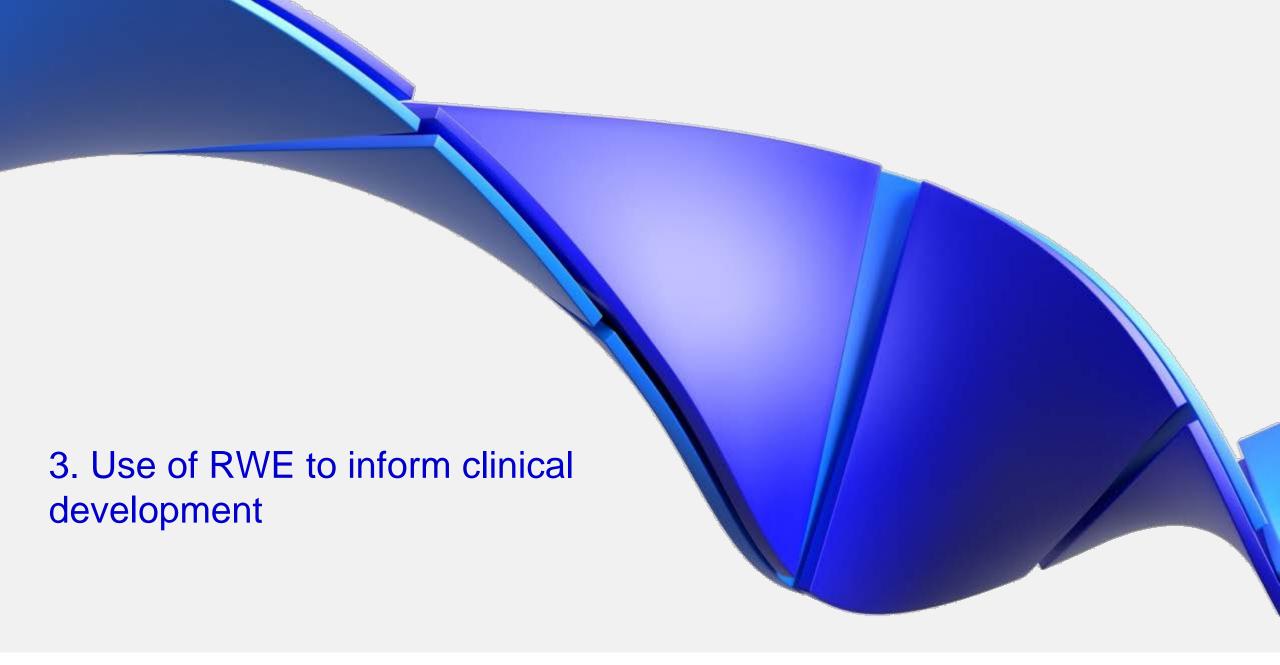
ImmunoInformatics

Deep learning for the detection of microsatellite instability from histology images in colorectal cancer: A systematic literature review

Amelie Echle ^a, Narmin Ghaffari Laleh ^a, Peter L. Schrammen ^a, Nicholas P. West ^b, Christian Trautwein ^a, Titus J. Brinker ^c, Stephen B. Gruber ^d, Roman D. Buelow ^e, Peter Boor ^e, Heike I. Grabsch ^{b, f}, Philip Quirke ^b, Jakob N. Kather ^{a, b, g} ♣ ☒

Echle, A., Laleh, N. G., Schrammen, P. L., West, N. P., Trautwein, C., Brinker, T. J., ... & Kather, J. N. (2021). Deep Learning for the detection of microsatellite instability from histology images in colorectal cancer: a systematic literature review.

Adding endpoints allows us to understand heterogeneity among subpopulations

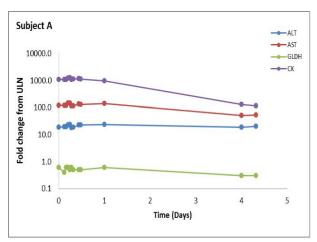

Using real world data to challenge epi assumptions in TPP

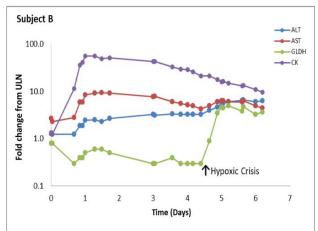
Subgroup	Status	N study	N	n	Prevalence	95% CI	All tumors, random effects
Overall	dMMR	54	20383	3279	0.16	0.11-0.22	· ; · · · · · · · ; · · · · · · ; · · · · · · ; · · · · · · · ; · · · · · · · · ; · · · · · · · · ; · · · · · · · · ; · · · · · · · · ; · · · · · · · · · ; · · · · · · · · · ; ·
Overall (sens.)	dMMR	52	20216	3190	0.16	0.12-0.21	<u> </u>
Country-United States	dMMR	27	5416	1066	0.14	0.06-0.23	- j j j j
Country-United States (sens.)	dMMR	25	2594	977	0.14	0.07-0.22	i
Country-Japan	dMMR	2	678	101	0.20	0.00-0.63	· · · · · · · · · · · · · · · · · · ·
Overall (without genomic studies)	MSI-H	90	28213	3494	0.14	0.10-0.19	
Overall (with genomic studies)	MSI-H	94	66669	4843	0.10	0.07-0.14	l - j
Country-United States	MSI-H	25	5654	1127	0.20	0.16-0.24	ļ
Country-Korea	MSI-H	17	14630	1192	0.09	0.06-0.12	dodododododo.
Country-Japan	MSI-H	8	1681	198	0.16	0.09-0.26	<u> </u>
Stage 1	MSI-H	18	3305	409	0.10	0.04-0.17	I i i i i i i i i i i i i i i i i i i i
Stage 2	MSI-H	18	1535	258	0.19	0.11-0.27	ļ. j j
Stage 3	MSI-H	17	1636	157	0.09	0.03-0.17	ii iiiiii.
Stage 4	MSI-H	18	665	36	0.03	0.01-0.07	↓ .;•••
Stages 1-2	MSI-H	24	5827	915	0.15	0.08-0.23	
Stages 3-4	MSI-H	23	2514	246	0.09	0.04-0.16	↓ .j
Overall (without genomic studies)	MSI-H/dMMR	136	47218	6560	0.15	0.11-0.18	ļ.i
Overall (with genomic studies)	MSI-H/dMMR	140	85674	7909	0.11	0.08-0.15	ļ.i
Overall	MSS	79	17613	14056	0.79	0.72-0.85	I i i i i i i i i i i i i i i i i i i i
							0.00 0.25 0.50 0.75 1.00

- MSI-H widely reported to be 15% of CRC

ors: a structured literature review. Journal of Oncology, 2020.

Data mining for endpoint discovery: hypothesis generation Scenario: clinical trial planning for Duchenne Muscular Dystrophy





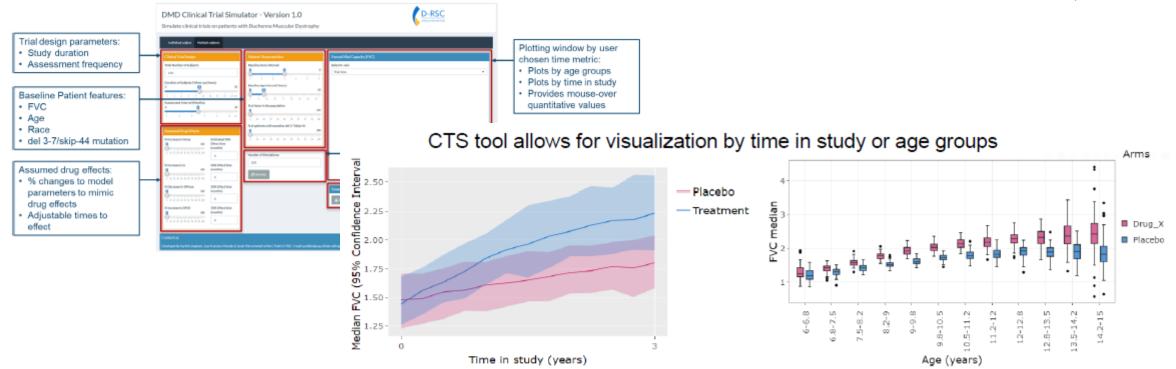
Mining real world clinical data for safety and efficacy biomarkers

GLDH detects the onset of liver injury in a subject with rhabdomyolysis in a real world prospective trial

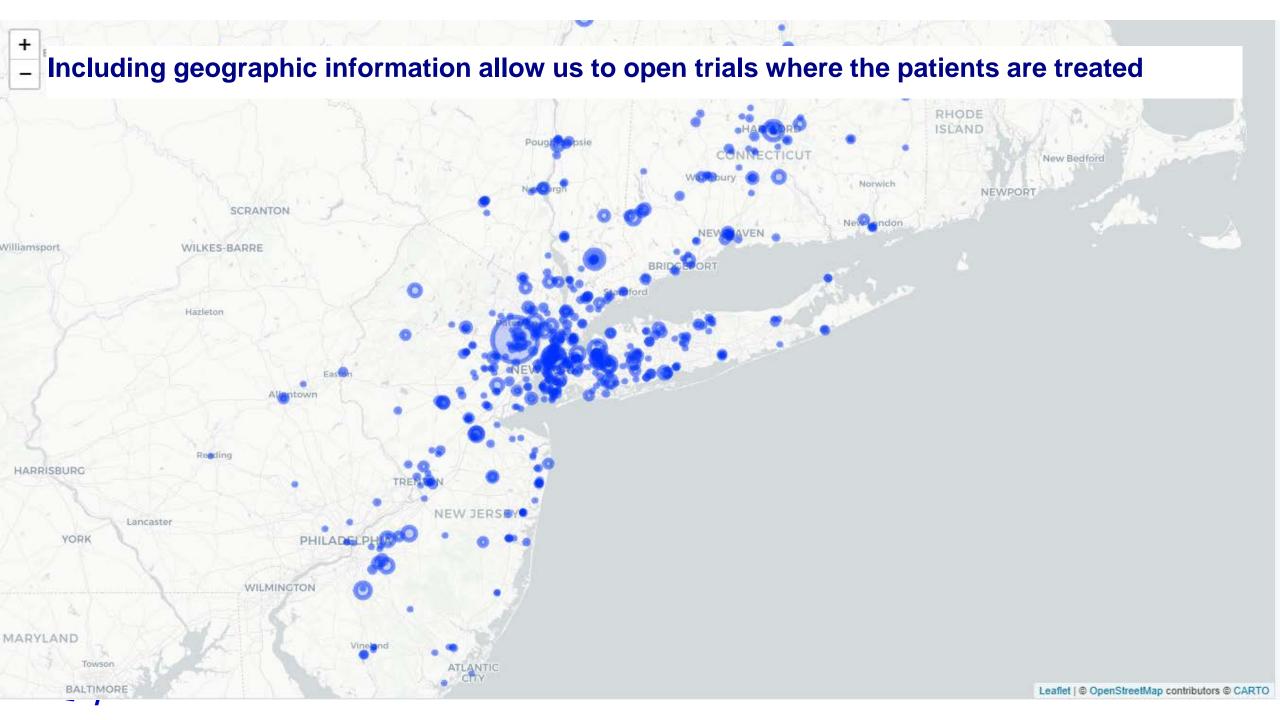
FDA guidance on DMD efficacy endpoints

"FDA encourages sponsors to propose and, if necessary, develop endpoints that can validly and reliably assess patients with a wide spectrum of symptoms and disease stages. Sponsors should engage FDA early during the selection and/or development of efficacy endpoints. The sponsor should include an assessment of multiple efficacy endpoints, when feasible."

Serum glutamate dehydrogenase activity enables early detection of liver injury in subjects with underlying muscle impairments - PMC (nih.gov) Duchenne Muscular Dystrophy and Related Dystrophinopathies: Developing Drugs for Treatment Guidance for Industry (fda.gov)



Simulations to explore optimal clinical trial designs



Example: Simulation of 100 trials, 50 patients/arm, baseline age 6-12 yrs, duration 3 years, drug predicted to have 30% effect on maximum FVC achieved

 $https://c-path.org/wp-content/uploads/2021/04/Development-of-a-regulatory-ready-clinical-trial-simulation-tool-for-Duchenne-muscular-dystrophy_Poster_WMS_2020.pdf$

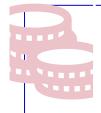
PHI – RWE COE

Emerging Opportunities for Incorporating RWE in Drug Development

New data sources, new uses expected to grow over next 3-5 years

Real world genomics for target discovery and validation

Genomic data from real world care and from biobanks


Prospective observational studies can be started as soon as FIH

Use of organoids and xenografts to inform disease model and understand drug response and resistance

Causal Inference Modeling for hypothesis generation

Tokenization for long term follow up

RW Single-cell RNAseq to understand tumor microenvironment throughout patient journey

Thank you!

